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This project was devoted to finding design algorithms which begin with a

code of a fixed structure and then iteratively improve the code in the sense of

producing codes with lower distortion and hence better fidelity. The code

structures are chosen to be implementable using current technology. The basic

structure of all of the systems developed is well suited to VLSI implementation:

a minimum distortion search algorithm on a chip communicating with off-board

storage for codebooks and next-state transition functions. _ _ _-

As most of the systems developed and studied as part of this contract are

described in detail in published papers, in papers currently being considered for

publication, or in papers in preparation, this final report presents only a brief

survey of the accomplishments under the contract toge'her with citations of the

papers where the detailed development and results may be found.
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Introduction and Summary

The fundamental goal of this contract was to develop computer aided design

algorithms for data compression systems and to study the performance and

complexity of these systems via simulation and mathematical analysis. Data

compression is the reduction of analog or high rate digital data to relatively low

rate digital information. Compression is desirable in order to minimize

communication channel capacity requirements in a fixed rate communication

system, to minimize packet size or transmission time in a packet or burst

communication system, or to minimize digital memory storage requirements in

systems where the data is stored for future reproduction, e.g., taped satellite data

or synthesized speech in talking computers. Since distortion is inevitable in

compression systems, a design goal is to minimize the average distortion for a

given communication or storage capacity or, equivalently, to minimize the

communication or storage capacity subject to satisfactory data fidelity.

This project was devoted to finding design algorithms which begin with a

code of a fixed structure and then iteratively improve the code in the sense of

producing codes with lower distortion and hence better fidelity. The code

structures are chosen to be implementable using current technology. The basic

structure of all of the systems developed is well suited to VLSI implementation:

a minimum distortion search algorithm on a chip communicating with off-board

storage for codebooks and next-state transition functions. As new and better

design algorithms are developed, the chips can be updated by simply reburning

the codebook and transition ROM's.

The original proposal emphasized the application of techniques developed at

Stanford for the design of vector quantizers to other data compression systems--

trellis encoding systems and hybrid vector quantization/tree encoding systems in

particular. Success on these code structures led to the development of design
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algorithms for other code structures: finite state vector quantizers, predictive

vector quantizers, feedback vector quantizers, gain/shape vector quantizers, and

adaptive vector quantizers. The initial focus on coding Gaussian random

processes, speech waveforms, and linear predictive coded (LPC) speech parameter

vectors was expanded to include image coding applications.

As most of the systems developed and studied as part of this contract are

described in detail in published papers, in papers currently being considered for

publication, or in papers in preparation, this final report presents only a brief

survey of the accomplishments under the contract together with citations of the

papers where the detailed development and results may be found. Copies of

reprints of papers published in journals will be forwarded to ARO as they

become available. A complete summary of all of the work supported by this

project except for the speech recognition work may be found in [I], a preprint of

which has already been forwarded to ARO.

The success of several of the techniques developed under the project is

attested to by their application to problems of speech and image coding and

speech recognition by a variety of organizations, including the U.S. Naval

Research Laboratory, Bell Laboratories, IBM, Matsushita, and NTT Musashino

Research Laboratory. Active research on applications of these techniques is also

currently tinder way at numerous universities, including the University of

California at Berkeley and at Santa Barbara, the University of Mexico, Osaka

University, Ehime University, Insitutut fur Angewandte Physik der Johann-

Wolfgang-Goethe Universitat in Frankfurt, Germany, and the California State

University, San Diego. The bulk of the current research is now being conducted

in Japan, where devices based on design techniques developed under this project

are now in development.
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Memoryless Vector Quantization and Data Compression

Mathematically, a k-dimensional memoryless vector quantizer or, simply, a

VQ (without modifying adjectives) consists of two mappings: an encoder 7 which

assigns to each input vector x=(zO,zi, • xk-,) a channel symbol -Ax) in some

channel symbol set M, and a decoder #assigning to each channel symbol u in M

a value in a reproduction alphabet A. The channel symbol set is often assumed

to be a space of binary vectors for convenience, e.g., M may be the set of all 2 R

binary R-dimensional vectors. The reproduction alphabet may or may not be the

same as the input vector space; in particular, it may consist of real vectors of a

different dimension.

If M has M elements, then the quantity R = log 2M is called the rate of the

quantizer in bits per vector and r = Rik is the rate in bits per symbol or, when

the input is a sampled waveform, bits per sample.

The application of a quantizer to data compression is depicted in Figure 1.

The input data vectors might be consecutive samples of a waveform, consecutive

parameter vectors in a voice coding system, or consecutive rasters or subrasters in

an image coding system. For integer values of R it is useful to think of the

channel symbols, the encoded input vectors, as binary R-dimensional vectors. As

is commonly done in information and communication theory, we assume that the

channel is noiseless, that is, that U,=&U,. While real channels are rarely

noiseless, the joint source and channel coding theorem of information theory

implies that a good data compression system designed for a noiseless channel can

be combined with a good error correction coding system for a noisy channel in

order to produce a complete system. In other words, the assumption of a noiseless

channel is made simply to focus on the problem of data compression system

design and not to reflect any practical model.

" , .. , . . . * . ." _-.. ..
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The goal of such a quantization system is to produce the "best" possible

reproduction sequence for a given rate R. To quantify this idea, to define the

performance of a quantizer, and to complete the definition of a quantizer requires

the idea of a distortion measure: A distortion measure d is an assignment of a

cost d(x,i) of reproducing any input vector x as a reproduction vector f. Given

such a distortion measure, we can quantify the performance of a system by an

average distortion Ed(X,X) between the input and the final reproduction: A

system will be good if it yields a small average distortion. In practice, the

important average is the long term sample average or time average

i n-i
lim - E d(Xi,Xi),
R-CO n i-

provided, of course, that the limit makes sense. For example if the process is

stationary and ergodic, then with probability one the above limit exists and

equals an expectation E(d(X,X)). We here assume that such conditions are met.

General conditions for this assumption to be valid have been developed [2J.

Ideally a distortion measure should be tractable to permit analysis,

computable so that it can be evaluated in real time and used in minimum

distortion systems, and subjectively meaningful so that large or small

quantitative distortion measures correlate with bad and good subjective quality.

We do not consider the difficult and controversial issues of selecting a distortion

measure; we assume that one has been selected and consider means of designing

systems which yield small average distortion. While several distortion measures

have been considered, two have received the most attention because of their

popularity and simplicity: The squared error distortion measure and the Itakura-

Saito (IS) distortion. The squared error distortion measure and its weighted

generalizations is useful for waveform coding applications since minimizing its

average is equivalent to minimizing the power in the reproduction error signal,
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possibly with selective frequency weighting or weighting based on long term input

power. The IS distortion measure is useful in voice coding applications where the

receiver is sent a linear model of the underlying voice production process. More

generally, this distortion measure is a special case of a minimum relative entropy

or discrimination measure and VQ using such distortion measures can be viewed

as an application of the minimum relative entropy pattern classification technique

introduced by Kullback as an application of information theory to statistical

pattern classification. This latter connection suggests that the distortion measure

may also be useful in recognition and classification applications. Details of the

definition and properties of this distortion measure (which require LPC notation

and jargon) may be found in 13, 4, 5, 6].

For this summary, we note simply that this is the distortion measure

implicitly minimized by LPC speech systems, the best quality very low rate

digital speech systems, and that the distortion measure is relatively complicated-

-it is not a simple function of an error vector, it is not symmetric in its input and

output, arguments, and it is not a metric or distance.

A VQ is said to be optimal if it minimizes an average distortion

Ed(X,3(i(X))). A general algorithm for the design of vector quantizers that are

at least locally optimal was developed by generalizing a technique of Lloyd for

the design of optimal PCM systems (7,8]. The algorithm begins with an initial

code and then iteratively optimizes the encoder for the decoder and vice versa in

the sense of reducing the long term average distortion for a training sequence of

data typical of the source to be compressed. Before the beginning of this

contract, the basic algorithm had been developed for memoryless vector

quantizers and a variety of initialization schemes for the algorithm had been

developed. The technique was used successfully on speech waveforms, LPC

speech parameter vectors, and a variety of random process models.
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Variations of Memoryless Vector Quantizers

Before considering vector quantizers with memory, we consider two

important variations of memoryless VQ developed in this project. While

mathematically suboptimal, both variations yield efficient implementations that

can provide equal performance and rate with smaller computational complexity.

Codes can be designed for all of these structures using variations of the basic

design algorithm.

Tree-Searched VQ

Tree-searched vector quantizers were first proposed by Buzo et al. [3]. They

can be viewed as a vector generalization of a successive approximation scalar

quantizer. The code has a tree structure and each input vector is encoded using a

sequence of small, e.g., binary choices rather than a single search of a full

codebook. The encoding is not optimal and the memory is increased, but in some

applications the coding is rnearly optimal. The search complexity is, however,

greatly reduced.

Gain/Shape VQ

A gain/shape VQ is an example of a product/multistep VQ where separate

attributes of the input vector are encoded using separate, but interdependent,

codebooks. In a gain/shape VQ separate codes are used to code the "shape" and

"gain" of the waveform, where the "shape" is defined as the original input vector

normalized by removal of a "gain" term such as energy in a waveform coder or or

LPC residual energy in a vocoder. Gain/shape encoders were introduced by Buzo

el al. [31 and were subsequently extended and optimized by Sabin and Gray

[9, I0. The basic idea is to use \'Q only on the complicated shape vector, and

then use a simple scalar code, which is dependent on the shape codeword

selerted. to encode the gain. This permits higher rates and hence better quality

reasonable memory and computation requirements. Such systems have a



much wider dynamic range than ordinary VQ.

Separating Mean VQ

Another example of a product/multistep code is the separating mean VQ

where a sample mean instead of an energy term is removed 111]. In a separated

mean VQ one first uses a scalar quantizer to code the sample mean of a vector,

then the coded sample mean is subtracted from all of the components of the

input vector to form a new vector with approximately zero sample mean. This

new vector is then vector quantized. The basic motivation here is that in image

coding the sample mean of pixel intensities in a small rectangular block

represents a relatively slowly varying average background value of pixel intensity

around which there are variations.

Feedback Vector Quantizers

Memory can be incorporated into a vector quantizer in a simple manner by

using different codebooks for each input vector, where the codebooks are chosen

based on past input vectors. The decoder must know which codebook is being

used by the encoder in order to decode the channel symbols. This can be

accomplished in two ways: 1) The encoder can use a codebook selection

procedure that depends only on past encoder outputs and hence the codebook

sequence can be tracked by the decoder. 2) The decoder is informed of the

selected codebook via a special low-rate side channel. The first approach is called

feedback vector quantization and is the topic of this section. The name follows

i because the encoder output is "fed back" for use in selecting the new codebook.

A feedback vector quantizer can be viewed as the vector extension of a scalar

adaptive quantizer with backward estimation (AQB). The second approach is the

vector extension of a scalar adaptive quantizer with forward estimation (AQF)

and is called simply adaptive vector quantization. Observe that systems can

L ,_ - . ,. . ....
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combine the two techniques and use both feedback and side information. We also

poir" out that unlike most scalar AQB and AQF systems, the vector analogs

considered here involve no explicit estimation of the underlying densities.

It should be emphasized that the results of information theory imply that

VQ's with memory can do no better than memoryless VQ's in the sense of

minimizing average distortion for a given rate constraint. In fact, the basic

mathematical model for a data compression system in information theory is

exactly a memoryless VQ and such codes can perform arbitrarily close to the

optimal performance achievable using any data compression system. The

exponential growth of computation and memory with rate, however, may result

in nonimplementable VQ's. A VQ with memory may yield the desired distortion

with practicable complexity.

A general feedback VQ can be described as follows Suppose now that we

have a space S whose members we shall call states and that for each state s in S

we have a separate quantizer: an encoder -1, and a decoder j,. The channel

code."ord space M is assumed to be the same for all of the VQ's. Consider a

data compression system consisting of a sequential machine such that if the

machine is in state s, then it uses the quantizer with encoder -1, and decoder 3,-

It then selects its next state by a mapping called a next-state function or state-

transition function f such that given a state s and a channel symbol u, then

f (u,s) is the new state of the machine. More precisely, given a sequence of input

vectors {x.; n=0,1,2,...} and an initial state so, then the subsequent state

sequence s, channel symbol sequence u., and reproduction sequence i are

defined recursively for n=0,1,2,... as

Un = YX = ( 8 + = s.

Since the next state depends only on the current state and the channel codeword,



the decoder can track the state if it knows the initial state and the channel

sequence. The freedom to use different quantizers based on the past without

increasing the rate should permit the code to perform better than a memoryless

quantizer of the same dimension and rate.

If the state space is finite, then the resulting system is called a finite-state
vector quantizer or FSVQ. For an FSVQ, all of the codebooks and the next-

state transition table can all be stored in ROM, making the general FSVQ

structure amenable to LSI or VLSI implementation 112].

()bserve that a menioryless vector quantizer can be modeled as a feedback

vector ql:arntizer or finite-state vector quantizer with only a single state.

Three design algorithms for feedback vector quantizers using variations on

the generalized Lloyd algorithm were studied as part of this project.

i) Vector l'redictive Quanlization

Cuperman and (;ersho [13, 1] proposed a vector predictive coder or vector

predictive (Itiantizer (VPO) which is a vector generalization of DPCM or

pre(ictive quantization. For a fixed predictor, the VQ design algorithm is used

to (lesign a VQ for the prediction error sequence. Cuperman and Gersho

considered several variations on the basic algorithm, some of which will be later

mentioned.

Chang and Gray [15, 1] developed an extension to Cuperman and Gersho's

algorithm which begins with their system and then uses a stochastic gradient

algorithm to iteratively improve the vector linear predictor coefficients, that is, to

better match the predictor to the quantizer. A stochastic gradient algorithm is

also used to improve the resulting codebooks.
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ii) Product/Multistep FVQ

A second basic approach for designing feedback vector quantizers which is

quite simple and works quite well is to use a product multistep VQ such as the

gain/shape VQ or the separating mean VQ and use a simple feedback quantizer

on the scalar portion and an ordinary memoryless VQ on the remaining vector.

This approach was developed in f161 for gain/shape VQ of LPC parameters and

in 111 for separating mean VQ of images. Both efforts used simple scalar

predictive q(iantization for the feedback quantization of the scalar terms.

iii) Finite State Vector Quantizers

The first general design technique for finite-state vector quantizers was

reported by Foster and Gray [17. 181, and developed further developed in [10].

There are two principal design components: 1. Design an initial set of state

co(lebooks and a next-state function using an ad hoc algorithm. 2. Given the

next-state runction. use a variation of the basic algorithm to improve the state

code ooks. The second component is accomplished by a slight extension of the

basic algorithm that is similar to the extension of [201 for the design of trellis

encoders. The best design algorithm found for the first step is called the

omniscient state design technique and it involves the design of an idealized state

sequence for which the ordinary VQ design algorithm can be applied to the

separate sub-training sequences associated with each state. This idealized state is

then approximated by a trackable state selection based on encoder outputs. The

state sequences of such codes can be viewed as a form of coarse prediction of the

next input vector. A design algorithm similar to the omniscient design technique

was independently developed by Haoui and Messerschmitt [211.

After the basic design algorithms were developed, techniques based on the

theory of adaptive stochastic automata were applied to iteratively improve the
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transition structure of the finite state machines used for compression. These

algorithnis can be viewed as a prescription for a computer to efficiently modify

the parameters of a coding system while viewing the quality of the output in

order to obtain the best possible average quality 122]

Tree and Trellis Encoders

The actions of the decoder of a feedback VQ can be depicted as a directed

graph or tree. Instead of using the ordinary VQ encoder which is only permitted

to look at the current input vector in order to decide on a channel symbol, one

co uld use a algorithms such as the Viterbi algorithm, M-algorithm or M.L-

algorilhm. Fano algorithm, or stack algorithm for a minimum cost search

throtugh a directed graph and search several levels ahead into the tree or trellis

before choosing a channel symbol. This introduces an additional delay into the

enco(ling of several vectors, but it ensures better long run average distortion

)ehavior. This technique is called tree or trellis encoding and is also referred to

as look-ahead coding, delayed decision coding, and multipath search coding. 1201

A natural variation of the basic algorithm for designing FSVQ's can be used

to design trellis encoding systems where the vector quantizer encoder which finds

the minimum distortion reproduction for a single input vector is replaced by a

Viterbi or other search algorithm which searches the decoder trellis to some fixed

depth to find a good long term minimum distortion path. Scalar and simple two

dimensional vector trellis encoding systems were designed in [201 using this

approach.

Trellis encoding systems are not really vector quantization systems as we

have defined them since the encoder is permitted to search ahead to determine

the effect on the decoder output of several input vectors while a vector quantizer

is restricted to search only a single vector ahead. The two systems are intimately

related, however, and a trellis encoder can always be used to improve the
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performance of a feedback vector quantizer. Very little work has yet been done

on vector trellis encoding systems.

Adaptive Vector Quantization

As a final class of VQ we consider systems that use one VQ to adapt a

waveforni coder, which might be another VQ. The adaptation information is

communicated to the receiver via a low rate side information channel.

The various forms of vector quantization using the Itakura-Saito family of

distortion measures can be considered as model classifiers, that is, they fit an all-

pole model to an observed sequence of sampled speech. When used alone in an

LPC 'Q system, the model is used to synthesize the speech at the receiver.

Alternatively, one could use the model selected to choose a waveform coder

designed to be good for sampled waveforms that produce that model. For

example, analogous to the omniscient design of FSVQ one could design separate

VQ's for the subsequences of the training sequence encoding into common

models. Both the model index and the waveform coding index are then sent to

the receiver. Thus LPC VQ can be used to adapt a waveform coder, possibly

also a VQ or related system. This will yield a system typically of much higher

rate than the LPC VQ system, but potentially of much better quality since the

codebooks can be matched to local behavior of the data. The model VQ

typically operates on a much larger vector of samples and at a much lower rate

in bits per sample than does the waveform coder and hence the bits spent on

specifying the model through the side channel are typically much fewer than

those devoted to the waveform coder.

There are a variety of such possible systems since both the model quantizer

and the waveform quantizer can take on many of the structures so far considered.

One example was developed for this project by Chang and Gray [15, 1). The

system uses an ordinary LPC VQ as the classifier and with a stochastic gradient

-- .... .................... ............. ..... "



algorithm run on each of the vector predictive quantizers in order to improve the

prediction coefficients for the corresponding codebooks.

A different system using LPC VQ for adaptation and a trellis waveform

encoder was developed by [20]. Both of these systems used the basic algorithm to

design both the model VQ and the waveform coders.

Many other variations on the general theme are possible and the structure is

a promising one for processes such as images and speech that exhibit local

stationarity, that is, slowly varying short term statistical behavior. The use of

one VQ to partition a training sequence in order to design good codes for the

resulting distinct subsequences is an intuitive approach to the computer-aided

design of adaptive data compression systems.

N1

' Li
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Contributions

Given the preceding general descriptions, we can now summarize the

contributions of this project. This section lists all of the papers published with

the full or partial support of this contract.

The initial contributions were the extension of the original VQ design

algorithms to design trellis encoding systems for Gaussian processes and for

speech waveforms. These techniques were combined with LPC VQ techniques to

obtain an adaptive midrange speech compression system that yielded good

quality speech at 1 bit per sample with lower complexity than competing APC

schemes [1].

Another early contribution was the study of the performance and complexity

tradeoffs for full search VQ and tree-searched VQ applied to Gauss Markov

sources [2].

The basic VQ design techniques were applied to image coding to obtain good

quality images at rates of 1/2 to I bit per pixel [3]. In order to improve

implementation efficiency and to better handle dynamic range, gain/shape VQ

and separating mean VQ were developed, the first being used primarily for speech

waveforms and LPC parameter compression 14,51 and the second for image

coding applications [6].

The basic algorithms for designing finite state vector quantizers were

developed for this project and applied to Gaussian processes and speech

waveforms [7,81 and LPC parameter vectors [].

Another feedback quantizer, the separating-mean FVQ was developed 161

and successfully used for image coding applications at rates of I bit per pixel and

less. More detailed papers on the image coding applications are currently in

preparation.
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A variety of predictive vector quantizers and adaptive vector quantizers have

been developed and preliminary results have been obtained by Chang and Gray

[10, 11], but work is not yet complete. We are attempting to find funding to

continue this work.

Recently VQ has also been successfully used in isolated word recognition

systems without dynamic time warping by using either separate codebooks for

each utterance or by mapping trajectories through one or more codebooks. We

have also developed initial results along these lines including and endpoint

algorithm suitable for use with VQ-based compression and recognition systems

[12] and a simple vowel recognition system [13]. We believe that this too is a

promising area and we are seeking additional funds from private industry to

continue the project.

1 4.



- 20-

Publications Supported by the Project

References

1. L.C. Stewart, R.M. Gray, and Y. Linde, "The design of trellis waveform
coders," IEEE Transactions on Communications COM-30 pp. 702-710
(April 1982).

2. R. N1. Gray and Y. Linde, "Vector quantizers and predictive quantizers for
Gauss-Markov sources," IEEE Transactions on Communications COM-
30 pp. 381 - 389 (Feb. 1982).

3. R.L. Baker and R.M. Gray, "Image compression using non-adaptive spatial
vector quantization," Conference Record of the Sixteenth Asilornar
Conference on Circuits Systems and Computers, (October 1982).

4. M.J. Sabin and R.M. Gray, "Product code vector quantizers for speech
waveform coding," Conference Record Globecom '82, pp. 1087-1091
(December 1982).

5. M.J. Sabin and R.M. Gray, "Product code vector quantizers for waveform
and voice coding," IEEE Transactions on Acoustics, Speech, and Signal
Processing, (April 1984). to appear.

6. R.L. Baker and R.M. Gray, "Differential vector quantization of achromatic
imagery," Proceedings of the International Picture Coding Symposium,
(March 1983).

7. J. Foster and R.M. Gray, "Finite-state vector quantization," Abstracts of the
1982 IEEE International Symposium on Information Theory, (June 1982).

8. J. Foster , R.M. Gray, and N1. Ostendorf, "Finite-state vector quantization
for waveform coding," IEEE Transactions on Information Theory, (1984). to
appear.

8. N1. Ostendorf and R.M. Gray, An algorithm for the design of labeled-
transition finite-state vector quantizers, submitted for publication 1981.

10. P.C. Chang, Ph. D. Research 1983.
11. R.A. Gray, "Vector Quantization," IEEE ASSP Magazine, (April 1981). to

appear.
12. C. Tsao and R.M. Gray, "An endpoint detector for LPC speech using

residual error look-ahead," Proceedings of the International Conference on
Acouslics, Speech, and Signal Processing, (March 1984).

13. C. Tsao and R.M. Gray, "An approach to speaker-dependent vowel
recognition using vector quantization," Conference Record, Tou'ards
Robustness in Speech Recognition, Speech Science Publications, Santa
Barbara, CA, (November 1983).



-21-

Participating Scientific Personnel and Degrees Awarded

Robert N1. Gray, Principal Investigator

Students:

L.C. Stewart, earned Ph.D. on project, June 1981

John Foster, earned Ph.D. on project, November 1982 (Foster's salary was

paid for by a Bell Labs Ph.D. fellowship, but he was an active participant in the

project)

R.L. Baker, Ph.D. expected spring 1984

M.J. Sabin, Ph.D. expected spring 1984

N1. Ostendorf, Ph.D. expected summer 1984

C. Tsao (Salary paid for by a fellowship from the government of Singapore,

but an active participant in the project)

P.C. Chang


